Many reef fishes feed constantly at the bottom of the reef from where they garner different types of food such as detritus, algae and invertebrates. Food consumption is extremely important for fish to achieve their energy targets, grow and reproduce. Unfortunately, quantifying fish food consumption by fish in the field is challenging because they are highly mobile organisms...
**Aim:** Variation in the size and position of geographical ranges is a key variable that underlies most biogeographical patterns. However, relatively little is known in terms of general principles driving their evolution, particularly in the marine realm. In this study we explore several fundamental properties regarding the evolution of reef fish latitudinal...
Sea-level rise is predicted to cause major damage to tropical coastlines. While coral reefs can act as natural barriers for ocean waves, their protection hinges on the ability of scleractinian corals to produce enough calcium carbonate (CaCO3) to keep up with rising sea levels...
In ecosystems, the efficiency of energy transfer from resources to consumers determines the biomass structure of food webs. As a general rule, about 10% of the energy produced in one trophic level makes it up to the next. Recent theory suggests that this energy transfer could be further constrained if rising temperatures increase metabolic growth costs, although experimental confirmation in whole ecosystems is lacking. Here we quantify...
**1.** Energy flow and nutrient cycling dictate the functional role of organisms in ecosystems. Fishes are key vectors of carbon (C), nitrogen (N) and phosphorus (P) in aquatic systems, and the quantification of elemental fluxes is often achieved by coupling bioenergetics and stoichiometry. While nutrient limitation has been accounted for in several...
**1.** Growth rates directly influence individual fitness and constrain the flow of energy within food webs. Determining what factors alter the energetic cost of growth is therefore fundamental to ecological and evolutionary models. **2.** Here, we used theory to derive predictions about how the cost of growth varies over ontogeny and with temperature...
Our findings suggest that body size distribution, reef area, and temperature are major predictors of species richness and accumulation across scales, consistent with recent theories linking home range to species-area relationships as well as metabolic effects on speciation rates. Based on our results, we hypothesise that in less diverse areas, species are larger and likely more dispersive, leading to larger range sizes and less turnover between sites...
Our findings support results from Rass (1941) and some predictions from Winemiller and Rose (1992). The effects of environmental means and predictability on marine fish egg size are largely consistent with those observed in marine invertebrates with feeding larvae, suggesting important commonalities in how ectotherm egg size responds to environmental change. Our results further suggest that anthropogenically-mediated changes in the environment will have profound effects on the distribution of marine life histories.
Body size determines total reproductive-energy output. Most theories assume reproductive output is a fixed proportion of size, with respect to mass, but formal macroecological tests are lacking. Management based on that assumption risks underestimating the contribution of larger mothers to replenishment...
The allocation of metabolic energy to growth fundamentally influences all levels of biological organisation. Here we use a first‐principles theoretical model to characterise the energetics of fish growth at distinct ontogenetic stages and in distinct thermal regimes...