**1.** Energy flow and nutrient cycling dictate the functional role of organisms in ecosystems. Fishes are key vectors of carbon (C), nitrogen (N) and phosphorus (P) in aquatic systems, and the quantification of elemental fluxes is often achieved by coupling bioenergetics and stoichiometry. While nutrient limitation has been accounted for in several...
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits...
**1.** Growth rates directly influence individual fitness and constrain the flow of energy within food webs. Determining what factors alter the energetic cost of growth is therefore fundamental to ecological and evolutionary models. **2.** Here, we used theory to derive predictions about how the cost of growth varies over ontogeny and with temperature...
Our findings suggest that body size distribution, reef area, and temperature are major predictors of species richness and accumulation across scales, consistent with recent theories linking home range to species-area relationships as well as metabolic effects on speciation rates. Based on our results, we hypothesise that in less diverse areas, species are larger and likely more dispersive, leading to larger range sizes and less turnover between sites...
Our findings support results from Rass (1941) and some predictions from Winemiller and Rose (1992). The effects of environmental means and predictability on marine fish egg size are largely consistent with those observed in marine invertebrates with feeding larvae, suggesting important commonalities in how ectotherm egg size responds to environmental change. Our results further suggest that anthropogenically-mediated changes in the environment will have profound effects on the distribution of marine life histories.
Body size determines total reproductive-energy output. Most theories assume reproductive output is a fixed proportion of size, with respect to mass, but formal macroecological tests are lacking. Management based on that assumption risks underestimating the contribution of larger mothers to replenishment...
The allocation of metabolic energy to growth fundamentally influences all levels of biological organisation. Here we use a first‐principles theoretical model to characterise the energetics of fish growth at distinct ontogenetic stages and in distinct thermal regimes...