growth

Nutrient limitation, bioenergetics and stoichiometry: a new model to predict elemental fluxes mediated by fishes

**1.** Energy flow and nutrient cycling dictate the functional role of organisms in ecosystems. Fishes are key vectors of carbon (C), nitrogen (N) and phosphorus (P) in aquatic systems, and the quantification of elemental fluxes is often achieved by coupling bioenergetics and stoichiometry. While nutrient limitation has been accounted for in several...

Warming increases the cost of growth in a model vertebrate

**1.** Growth rates directly influence individual fitness and constrain the flow of energy within food webs. Determining what factors alter the energetic cost of growth is therefore fundamental to ecological and evolutionary models. **2.** Here, we used theory to derive predictions about how the cost of growth varies over ontogeny and with temperature...

The energetics of fish growth and how it constrains food-web trophic structure

The allocation of metabolic energy to growth fundamentally influences all levels of biological organisation. Here we use a first‐principles theoretical model to characterise the energetics of fish growth at distinct ontogenetic stages and in distinct thermal regimes...

Scaling

Linking biological levels of organisation through energetics.