Marine protected areas (MPAs) are important tools for managing marine ecosystems. MPAs are expected to replenish nearby exploited populations through the natural dispersal of young, but the models that make these predictions rely on assumptions that have recently been demonstrated to be incorrect for most species of fish. A meta‐analysis...
Our findings suggest that body size distribution, reef area, and temperature are major predictors of species richness and accumulation across scales, consistent with recent theories linking home range to species-area relationships as well as metabolic effects on speciation rates. Based on our results, we hypothesise that in less diverse areas, species are larger and likely more dispersive, leading to larger range sizes and less turnover between sites...
Despite decades of research, we remain uncertain whether the TSR is an adaptive response to temperature‐related physiological (enzyme activity) or ecological changes (food, predation and other mortality), or a response to constraints operating at a cellular level (oxygen supply and associated costs). To make progress, ecologists, physiologists, modellers and geneticists should work together to develop a cross‐disciplinary...
Our findings support results from Rass (1941) and some predictions from Winemiller and Rose (1992). The effects of environmental means and predictability on marine fish egg size are largely consistent with those observed in marine invertebrates with feeding larvae, suggesting important commonalities in how ectotherm egg size responds to environmental change. Our results further suggest that anthropogenically-mediated changes in the environment will have profound effects on the distribution of marine life histories.
Body size determines total reproductive-energy output. Most theories assume reproductive output is a fixed proportion of size, with respect to mass, but formal macroecological tests are lacking. Management based on that assumption risks underestimating the contribution of larger mothers to replenishment...
The allocation of metabolic energy to growth fundamentally influences all levels of biological organisation. Here we use a first‐principles theoretical model to characterise the energetics of fish growth at distinct ontogenetic stages and in distinct thermal regimes...
Linking biological levels of organisation through energetics.
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species...
Fishes contribute substantially to energy and nutrient fluxes in reef ecosystems, but quantifying these roles is challenging. Here, we do so by synthesising a large compilation of fish metabolic-rate data with a comprehensive database on reef-fish community abundance and biomass...